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NOMENCLATURE

A	 = area

Co	 = fluid ideal velocity

CI,	 = specific heat

D	 = bore diameter, mm

g	 = gravitational constant

H	 = pump head rise

J	 = conversion

LH2	= liquid hydrogen

LOX = liquid oxygen

N	 = pump rotational speed, rpm

n	 = number of stages

NS	= specific speed

NPSH = net positive suction head

Q	 = volumetric flow rate

P	 = pressure

Po	 = inlet total pressure

P,	 = vapor pressure of fluid
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PR	 turbine pressure ratio

Ti	=	 inlet total temperature

U	 =	 tangential blade velocity

V	 =	 velocity

Ise,	 =	 specific impulse

Greek Symbol

y	 =	 specific heat ratio

P	 =	 fluid density

ABSTRACT

The propellant feed system of a liquid rocket engine determines how the propellants are

delivered from the tanks to the thrust chamber. They are generally classified as either pressure

fed or pump fed. The pressure-fed system is simple and relies on tank pressures to feed the

propellants into the thrust chamber. This type of system is typically used for space propulsion

applications and auxiliary propulsion applications requiring low system pressures and small

quantities of propellants. In contrast, the pump-fed system is used for high pressure, high

performance applications. The selection of one propellant feed system over another is

determined based on design trade studies at both the engine and vehicle levels. This chapter first

provides a brief overview of the basic configurations of pressure-fed systems. Pump-fed systems

are then discussed with greater detail given to the turbomachinery design. Selected design

requirements and configurations are provided.
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1. INTRODUCTION

The propellant feed system is a major component of a liquid rocket engine responsible for

delivering the propellants from the tanks to the thrust chamber at the required flow rate and

pressure conditions. The propellant feed system comprises all engine elements except the thrust

chamber assembly and control system. Broadly, it consists of propellant tanks, feed lines (e.g.

tubes and ducting), valves, and pressurization devices. Depending on how the propellants are

pressurized and fed into the thrust chamber, the feed system is classified as pressure-fed or

pump-fed as shown in Figure 1. The pressure-fed system is simple and relies on tank pressures to

feed the propellants into the thrust chamber. These systems are primarily used for space

propulsion applications and auxiliary propulsion applications, requiring low system pressures

and smaller quantities of propellants. For high-pressure, high-performance applications, the

pump-fed system is generally used by employing a turbopump. The word turbopump is used to

describe rotating turbomachinery pumping the propellants.

The selection of one propellant feed system over another is determined based on design

trade studies at both the engine and vehicle levels. Like any complex system, the vehicle and

engine requirements must be iterated such that the engine can support the vehicle requirements.

The advantages and disadvantages of pressure-fed versus pump-fed systems are traded early in

the design phase. Pressure-fed systems are generally limited to relatively low chamber pressures

because high pressures make the vehicle tanks too heavy. However, they can be reliable due to

its reduced part count and complexity. On the other hand, the advantages of using pump-fed

systems become apparent when the mission requirements dictate higher insertion velocities. The

use of turbopumps enables an engine operating at high chamber pressures (i.e. high thrusts)

without increasing the vehicle tank weight. The weight savings come about as a result of a
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reduction in pressure requirements on the supply tanks and their feed lines. The tank pressure

becomes practically independent of the chamber pressure using the turbopump. The turbopump

requirements are established by the engine power cycle being considered. Descriptions of

various engine power cycles are provided in Chapter 2.3.8 (see eael07). Details about the thrust

chamber design can be found in Chapter 2.3. 10 (see 109).

This chapter is organized as follows. A brief overview of the basic configurations of

pressure-fed systems is first given. Pump-fed systems are then discussed with greater detail given

to the turbopump design. Selected design requirements and configurations are provided.

Additional details about propellant feed system design are available in articles listed in the

References section.

2. PRESSURE-FED SYSTEMS

The pressure-fed system relies on tank pressures for pressurizing the propellants. The pressure-

fed system generally includes: 1) pressurized tank(s) to store propellants, 2) pressurant gas or

other expulsion device to provide energy for the feed system, 3) valves to control the pressure

and flow, 4) ducting or piping to transfer fluids, and 5) one or more thrust chambers to generate

thrust. The pressured-fed systems are classified according to the pressurant source, which

detennines how the propellant is expelled from the tank (Huzel and Huang, 1992). It can be as

simple as a cold gas thruster, which has a pressurized tank connected to a propellant tank. Figure

2 shows two other common configurations: 1) monopropellant and 2) bipropellant systems. The

monopropellant system uses a single propellant (e.g. hydrazine) flowing through a catalyst-bed

prior to expanding in a converging-diverging nozzle as shown in Figure 2(a). The pressure fed

can be a little more complicated with bi-propellant systems, which employ an oxidizer tank and a
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fuel tank, both of which require a pressurant system to expel the propellant into the feed system.

Figure 2(b) shows a schematic diagram of a typical bi-propellant system. Stored-gas pressurant

systems are widely used. The gas is stored in a pressurant tank at pressures up to 270 atm,

supplied to the propellant tanks at a regulated pressure. Helium is commonly used due to its low

molecular weight, minimizing total pressurant weight. Nonetheless, when selecting a

pressurization gas, various design factors must be taken account, including mission requirements,

reliability, cost, weight, size, and pressurant gas compatibility with tank materials.

The pressure-fed system has general characteristics of being a simple, low-cost design,

which provides low to moderate engine performance. The system can be reliable with few parts,

but are typically heavy because of the pressurized tanks. These systems are primarily used for

orbit maneuver, orbit insertion, attitude control, reaction control, and small upper stage

propulsion. There are operational factors influencing pressurant requirements. They include

propellant vaporization, tank wall temperature, vapor condensation, solubility of the

pressurization gas, tillage-gas compression, chemical reaction, and pressure-gas turbulence

(Huzel and Huang, 1992).

3. PUMP-FED SYSTEMS

The pump-fed system uses a turbopump to pressurize and feed the propellants into the

thrust chamber at relatively high pressures. The turbopump typically consists of one or more

pumping elements driven by a turbine. The energy to power the turbine itself is provided by the

expansion of high pressure gases, which are usually mixtures of the propellants being pumped.

Depending on how these gases are generated, the system can be classified as: 1) gas generator

cycle, 2) staged combustion cycle, or 3) expander cycle (see eae107).

6



Article Unique ID - eae110
Encyclopedia of Aerospace Engineering, Volume 2 Propulsion & Power, Wiley Publishers

3.1 Turbopump Assembly

Figure 3 shows a cross-sectional diagram of the basic turbopump assembly of a liquid rocket

engine, revealing the complicated nature of such a system. The turbopump assembly for a liquid

rocket engine is a complete system in itself. It consists of many elements, some of which are

themselves subsystems (e.g., pump and turbine). The turbopump consists of seven basic

elements: 1) pump, 2) turbine, 3) bearings, 4) seals, 5) housings, 6) thrust piston, and 7)

spline/couplings (Anon., 1974a). These basic elements along with a description of their function

are schematically illustrated in Figure 3.

The turbopump is designed to maximize the pump speed and to push the turbine gas

temperatures as high as possible. The turbopump speed is maximized to save weight while

maintaining operational efficiency. The temperature differentials between the turbine and pump

elements are substantial especially when pumping cryogenic propellants, such as liquid oxygen

(LOX) and liquid hydrogen (LH2). In addition, the turbopump operates over a wide pressure

range while pumping a fluid from a low pressure at the inlet to a very high pressure at the

discharge. The inlet pressures to the pumps are relatively low due to low tank pressures. Thus,

the potential for pump cavitation must be taken into account in the design. The cavitation is a

phenomenon that occurs when the static pressure at any point in a fluid flow passage becomes

less than the fluid's vapor pressure. The drive gases used to power the turbine are either high-

pressure combustion gases or heated gaseous fuel. The heat capacity and available energy of

these combustion products is roughly ten times that of the typical jet engine. More detailed

descriptions of auxiliary combustion devices can be found in Chapter 2.3.10 (see eae109).

Because of the extreme turbopump environments, the bearings must be cooled and lubricated by

the propellants being pumped. One critical area, which may not receive as much attention as

7



Article Unique ID - eae110
Encyclopedia of Aerospace Engineering, Volume 2 Propulsion & Power, Wiley Publishers

other areas, is the static and dynamic seals. These elements are used to preclude the mixing of

propellants within the turbopump, which can potentially result in burning or explosion if a

catastrophic failure occurs.

The turbopump being a highly integrated system requires multidisciplinary engineering

and coordination as well as a comprehensive set of design tools. Such complex mechanical

designs require an extensive amount of engineering effort across various technical disciplines

including hydrodynamics, aerodynamics, mechanical, structures, structural dynamics,

rotordynamics, thermal, materials, manufacturing, testing, and instrumentation. An illustration of

the multidisciplinary interaction can be found in the Figure 4, which shows a typical integrated

design process. A turbopump design process can be laid out in a systematic manner starting with

the establishment of turbomachinery design goals and requirements. These are derived from the

engine system requirements and include propellant flow rates, propellant properties, pump outlet

pressure (or discharge pressure), and turbine drive arrangement. If engines use fuel and oxidizer

with similar densities, such as LOX and RP-1, the fuel and oxidizer pumps can be mounted on

the same shaft and driven by a single turbine. When propellants with dissimilar densities such as

LOX and LH2 are used, they require separate pumps because the head rise is much higher for the

lower-density propellant. Thus, the LH2 turbopump usually requires multiple stages and will run

much higher speeds than the LOX turbopump.

A general overview of the major turbopump elements are provided in the following

subsections along with selected design configurations.

3.2 Pump Elements

The basic operational principle for a pump is to add energy to a fluid by a transfer of

angular momentum between the fluid and rotating element. The changes in angular momentum
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require changes in tangential velocity. The pump consists of elements that are both stationary

and rotating as shown in Figure 5. The rotating blades on an impeller or an inducer increase the

fluid tangential velocity while the stationary blades decrease the fluid tangential velocity. Two

types of energy conversions explain the complete pump flow process: 1) diffusion process where

the kinetic energy is converted to the pressure, and 2) shaft power produces the kinetic energy,

which is converted to the potential energy. The fluid enters the pump at a low pressure from the

supply tank. A tank pressurization system is necessary to maintain the required net positive

suction head (NPSH) to prevent pump cavitation. The pump inlet pressure is usually minimized

to reduce the tank size and weight. Once the fluid enters the pump at the inducer inlet, the

inducer adds energy to the fluid before passing to the impeller. The inducer needs to add

sufficient energy to the fluid to suppress cavitation of the fluid passing through the impeller. It

should be noted that not all designs require an inducer. The impeller adds significantly more

energy in the form of kinetic energy prior to directing the flow into the diffuser and the volute.

Standard pump requirements include the inlet temperature, inlet pressure, mass flow rate,

pump head rise, and NPSH. Once the pump requirements have been derived from the integrated

engine level, the pump design and sizing analysis are initiated to determine the required number

of pump stages, pump speed, impeller diameter, materials, tip speeds, pumping system

efficiency, and horsepower. At this design stage, it will also be determined if an inducer is

required.

Engine inlet conditions to the turbopump, expressed as NPSH, determine the pump

suction performance requirement and is written as:

NPSH = P ° P"
P	 (1)
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where Pi is the inlet total pressure, Po is the vapor pressure of fluid, go is the gravitational

constant, and p is the fluid density. The suction performance requirement is the ability of the

pump to operate at the available NPSH without experiencing severe cavitation. The pump

suction performance is dependent on the pump inlet pressure, which is driven by the tank and

feed system requirements. Another important pump design parameter based on pump affinity

laws is the specific speed Ns, which establishes the relationship between the shaft speed,

volumetric flow rate, and pump head and is expressed as:

NS — 
N^

H 0.75
	

(2)

n

where N is the pump rotational speed, Q is the volumetric flow rate, H is the pump head rise, and

n is the number of stages. Figure 6 shows the relationship of the pump efficiency as a function of

stage specific speed for various types of pumps. The pumps are generally classified as axial flow,

mixed flow, or centrifugal pumps. Among them, the centrifugal pump is typically considered the

preferred choice for large liquid rocket engines (Anon., 1973). The centrifugal pumps have

higher efficiencies relative to other pump types (Humble, Henry, and Larson, 1995). As shown in

Figure 6, a centrifugal pump stage operates at a higher specific speed compared to most other

pumps. This is due to the fact that for a given volume flow rate and head rise, the centrifugal

pumps operate at higher rotational speeds, which result in smaller pump diameters and masses.

From an engine operational perspective, they also have excellent off-design operating

characteristics compared to axial pumps and thus greatly simplify engine startup and shutdown

operational requirements.
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The centrifugal impellers can be either unshrouded or shrouded. The shrouded (or

covered) impeller is preferred because you can maintain a tighter clearance, which lowers

leakage and aides in thrust balance control. The shroud, however, adds mass, and thus puts

higher stresses on the part. The centrifugal impeller tip speeds are limited by hardware design

and material strength (e.g. 610 m/sec with titanium for LH2 and 274 m/sec with Inconel 718 in

LOX) (Humble, Henry and Larson, 1995). The maximum head produced by a single stage is

limited by the maximum allowable tip speeds. Thus, low-density fluids such as LH2 require the

use of multiple stages for high-pressure applications.

The inducer is a special pump impeller usually on the same shaft and rotating at the same

speed as the main impeller. It has a low head rise and therefore a relatively high specific speed.

The inducer is located immediately upstream of the main impeller. It is basically an axial flow

pump with a spiral impeller, and many operate under slightly cavitating conditions. Depending

on the engine system, a separate boost pump may be used. The inducer stage's head rise has to

be sufficiently large enough to suppress cavitation in the main pump impeller and is typically 2-

10% of the total pump head. This allows for a smaller, lighter, higher-speed main pump (Sutton

and Biblarz, 2001). Similar to the impeller, the inducer blade tip speeds are also limited by

hardware design and material strength (e.g. approximately 167 in/sec) (Stangeland, 1988).

The designer also needs to be attentive to selecting proper materials to maintain the

structural integrity of the inducers, impellers, and pump housing. Other critical areas involve the

propellant feed line configurations such as bends, bellows, and internal duct support strictures,

which can perturb the flow distribution at the pump inlet. In particular, there are two typical

characteristics of internal flow, which can cause problems: 1) cavitation, and 2) damaging

unsteady flows and forces (Brennen, 1994).

11



Article Unique ID - eae110
Encyclopedia of Aerospace Engineering, Volume 2 Propulsion & Power, Wiley Publishers

3.3 Turbine Elements

The basic operational principle for a turbine is to remove energy from a fluid by a transfer of

angular momentum between the fluid and rotating element. The changes in angular momentum

require changes in tangential velocity. The turbine consists of stationary and rotating elements as

shown in Figure 7. The rotating blades on a turbine disk decrease the fluid tangential velocity

while the stationary blades increase the fluid tangential velocity. Two types of energy

conversions explain the turbine flow process: 1) expansion process where the pressure is

converted to the velocity and 2) potential energy converted to the kinetic energy and thus to the

shaft power.

The turbine requirements are defined by the selected engine power cycle. The engine

power balance provides the turbine-drive gas type, flow rate, inlet temperature, inlet pressure,

and pressure ratio across the turbine. Once the turbine requirements have been determined and

the pump horsepower requirements are known, the turbine design and sizing analysis can begin.

A generalized approach for turbine design can listed as follows. First, the hot gas supply

properties (e.g. inlet temperature, specific heat, and specific heat ratio) are determined. Second,

the isentropic spouting velocity Co and turbine disk size/pitch velocity are calculated. Third, the

type of turbine for achieving the optimal turbine efficiency is determined. Fourth, the pump

requirements are balanced. Fifth, the turbine design parameters are compared with engine power

balance predictions. The turbine design process is a highly iterative process in order to satisfy the

engine requirements as well as satisfy the turbine performance, materials, stress, and dynamic

requirements.
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The turbine must supply the required power to drive the pump. The energy to drive the

turbine is derived from the expansion of the working fluid. The fluid enters the turbine at high

pressure and temperature conditions and is discharged from the turbine at a reduced pressure and

temperature condition. The turbine power is supplied by a hot gas source such as a gas generator,

preburner, or regenerative jacket, depending on the engine power cycle. The turbine efficiency is

dependent on three factors: 1) energy content per pound of the drive gas, 2) ratio of the tangential

blade velocity U to the fluid ideal velocity Co, and 3) type of turbine. The turbine velocity ratio

U/Co is used to empirically characterize the range of turbine efficiency in which the turbine

design operates and is expressed as:

r-^

U/ Co = U /2gJCPT, 1— PR '	 Singe Stage Turbine

U/C' = F1 Un 2 /Co Multistage Turbine

Various types of turbines are used to provide power to the pump. The turbine flow paths

can be axial or radial. An axial flow path design is typically used in liquid rocket engine

turbopumps due to its high efficiency and low weight. There are two primary types of axial flow

turbines: 1) impulse, and 2) reaction. They can be single staged or multiple stages. A single-stage

turbine has one nozzle and one rotor while a multi-stage turbine has multiple nozzles and rotors.

In the impulse turbine, all the gas is expanded across the nozzle. Impulse turbines

characteristically have high pressure ratios and low flows. The impulse turbine is generally

single stage but can have variations such as the velocity compounded or pressure compounded.

The pressure ratio is typically as high as 8 - 20 (Anon., 1974b). The reaction turbine accelerates

the fluid in both the nozzle and rotor. Compared to the impulse turbine, it has a low pressure

ratio and a high flow with higher efficiency, peaking at higher U/Co. The percent reaction for the
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stage is the ratio of the enthalpy drop in the rotor to the enthalpy drop across the stage and can

vary from 25 to 50 % (Anon., 1974b). Each of these turbine types mention above have different

velocity and pressure distributions, which result in each turbine having different efficiency

characteristic as shown in Figure 8. Ultimately, the design selection is made to maximize the

turbine efficiency and minimize the weight compatible with the selected shaft speed (Stangeland,

1988).

Similar to the pump, there are some structural limits on the turbine. The tip speed

structural limit is generally based on the centrifugal pull that can be carried at the base of the

blade airfoil for the selected material. This is usually expressed as AaN2(allowable annulus area

times speed squared) as a function of temperature (Stangeland, 1988). Other design limits relate

to the perfonnance and geometrical design requirements.

During turbine development, various kinds of design problems can be encountered. These

problems can be placed in two general categories: 1) low cycle fatigue, and 2) high cycle fatigue.

The low cycle fatigue results from extreme temperature gradients on the hardware during

operation. The flow path hardware such as the inlet housing, turbine blades, and nozzles can

experience low cycle fatigue cracks. Other problems encountered are associated with the high

cycle fatigue. The dynamic environment of the turbine either from the aerodynamic environment

or blade/vane passing frequency can tune with turbine components during operation. Blades,

vanes, or nozzles are usually subject to high cycle fatigue cracking because of the severe

dynamic environment. Dampers can be incorporated into turbine blades at the platform or the

blade tip/shroud to address blade resonances.
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3.4 Mechanical Elements (Bearings and Seals)

3.4.1 Bearings

The turbopump shaft is supported by two or more bearings, which are designed to

transmit all the fixed and dynamic loads acting on the rotor assembly to the housing (Anon.,

1971). Bearings control both the radial and axial motions of the turbopump rotor. Radial control

of the high-speed rotor is critical in centering the rotor in the turbopump housing to prevent rubs

and maintain radial clearance to reduce parasitic flow losses. Bearing designs provide axial

control of the rotor during the start and shutdown phases of the turbopump operation in response

to rapid changes in pressure, temperature, and rotor speed. The bearings selected for a

turbopump design must be able to handle the operational conditions. They must provide adequate

radial stiffness and damping for rotordynamic control. The fluid being pumped is generally used

to cool the bearings. Cryogenic fluids such as LH2 and LO2 provide little or no lubrication. RP-

1, on the other hand, does provide some lubrication.

One of the design limitations of rolling element bearings is the speed. The typical

parameter used to express this limitation is the DN limit. The DN is defined as the product of the

inner-race bore diameter D (in mm) and the pump rotational speed N (in rpm). The DN limit

ranges from 1.6 million to 2.1 million (Huzel and Huang, 1992). The shaft diameter along with

splines and couplings must be properly sized to transfer torque that is a function of speed and

horsepower (Stangeland, 1988). Once the shaft is sized, the bearing inner race diameter is

established. There are two major bearing types used in the turbopumps: 1) rolling elements, and

2) fluid film. The rolling element bearings consist of a cage (or ball separator), inner raceway,

outer raceway, and rolling element ball (or roller) as shown in Figure 9. The primary failure

modes of rolling element bearings are wear and fatigue, which limits life. Rolling element
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bearings, roller bearings, and ball bearings are the most commonly used because of their

capabilities in load, speed, stiffness, and misalignment tolerances. The selection of bearing

materials begins with understanding their compatibility with the propellants to be used. Bearings

have been typically made of 4400 material, which is corrosion resistant steel. Since most

propellants are poor lubricants, lubrication for the bearing is provided by either a baked on dry

film lubrication, burnishing raceways, or transferring lubrication for the cage or bearing

separator. The cage or ball separator is typically made of Armalon, which is a glass filled

polytetrafluoroethylene (PFTE) material. During bearing operation, the balls contact the cage

transferring a thin film of lubrication to the balls and raceways.

Another bearing type, which is gradually gaining acceptance in liquid rocket engine

turbomachinery, is the fluid film bearing such as the hydrostatic bearing. Hydrostatic bearings

have the potential benefit to increase bearing life and remove the speed limit associated with

rolling elements. One of the dominant features of the hydrostatic bearing is the significant

stiffness and damping (minimal with rolling elements), which can be obtained given sufficient

pressure and flow. These features are desirable to have in terms of rotordynamic characteristics.

Rotors supported by hydrostatic bearings must be controlled during transient operation such as

the engine startup and shutdown to prevent rubbing. The materials selected for hydrostatic

bearing application must be rubbing tolerant and fluid compatible.

3.4.2 Dynamic Seals

The turbopumps use dynamic shaft seals between rotating and stationary parts. The primary

purposes for dynamics seals are to minimize internal parasitic flows and to separate propellants

such as the oxidizer from the fuel. Seal failures can cause catastrophic turbopump failures as a

result of propellant mixing internally within the turbopump as well as rubs in oxidizing
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environments. A dynamic seal system for an interpropellant seal package consists of two face-

contact seals (one for the LOX side and one for the hot gas), a purged double circumferential

intennediate seal, drains, and purges. The leakage from the face-contact seals is drained through

separate drain systems, which need to be properly sized. The double circumferential seal is inert-

gas purged, usually with gaseous helium, providing effective separation of the drain cavities in

the event of a seal failure. Reliable operation of the turbopump requires a seal system designed

to: 1) minimize the severity of seal operating conditions, 2) provide allowances for all possible

operational extremes, and 3) allow for seal failure without destructive failure of the turbopump

(Anon., 1978). A good example or illustration is a seal used to separate two incompatible fluids

such as LOX and RP-1 or LH2 as shown in Figure 10.

Meeting all the design requirements for dynamic seals is critical and challenging.

Dynamic seals are usually exposed to fluids, which are non-lubricating. They deal with large

thermal gradients and high pressures, presenting fluid compatibility issues. After considering all

the mechanical, fluid, and thermal issues, one must consider the dynamics loads on the seals,

which can be induced by fluids or mechanically. These dynamic loads can occur during steady

state or transient operation. Dynamic seals with bellows typically require dampers to address

structural dynamic concerns.

The primary types of rotating seals used in the turbopumps are the face-contact and

circumferential seals. Face-contact seals use face seals in rubbing contact with a mating ring for

sealing the fluid. Circumferential seals in interpropellant seals are used for sealing turbine hot

gases. Circumferential seal designs can be either segmented seals/floating ring ribbing-contact

seals or clearance gap type labyrinth seals. As with other elements in the turbopump design,

rubbing contact seals are surface speed limited due to the heat generated by friction torque at the
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seal interface and the capacity of the interface to remove heat. A design guide for establishing a

face load and surface speed limits was developed by studying the heat generation and speed limit

as a function of surface temperature. The pressure X velocity (PV) is proportional to the heat

generation per unit area and is a better indication of heat-transfer capacity (Anon., 1978). The PV

factor limits for face contact seals in various fluids have been developed and are used during the

seal design process. A detail structural, thermal, and flow model of the seal system is needed to

ensure all seal fits, clearances, leakage flows, thermal limits on materials are maintained during

all phases of operation.

3.5 Rotordynamics

Rotordynamics is a specialized area of structural dynamics, which deals with the vibration of the

rotating assembly and interaction with the stationary hardware. Modern turbomachinery systems

are continuing to push the speed and power density. This means the rotordynamic design tools

are being pushed as well. The importance of doing a credible job in analyzing the rotor system

cannot be over emphasized. Rotordynamics is the key in determining the reliability of

turbomachinery. For example, when a turbopump encounters a vibration problem, it has far

reaching programmatic and economic consequences such as halting the entire engine

development program. This happened in 1976 to the Space Shuttle main engine program when

its high-pressure fuel turbopump encountered a sub-synchronous whirl problem, which required

approximately ten months to resolve.

The rotating assembly of a rocket engine turbopump consists of many parts including

impellers, turbine disks, shaft, seals, spacers, and bearings. The rotor assemblies can have many

resonances (or natural frequencies). When the natural frequency of the rotor system synchronizes

with the frequency of the forcing function, this is called a critical speed. These natural
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frequencies can be excited by many sources, such as the shaft-rotating unbalance, blade/vane

passing frequency excitation, rubbing between rotating and stationary parts, seal dynamic forces,

housing stiffness asymmetry, hydrodynamic forces, and aerodynamics forces. The primary

objectives of rotordynamics are to determine the natural frequencies of a rotor assembly and to

design the system around them (Leader, 1984).

A number of design factors such as the bearing stiffness, bearing span, shaft diameter,

mass placement, and overhung mass must be considered in rotordynamics. Among these factors,

the bearing stiffness is the most important parameter. The bearings used to support a rotor can be

either rolling elements or fluid film. The type of bearing selected will determine the amount of

stiffness and damping available. Rolling element bearings provide very little, if any, damping but

provide a fixed amount of stiffness over the speed range. Fluid film bearings, on the other hand,

have operational characteristics in tenns of stiffness and damping, which change as a function of

speed. Damping is the only mechanism, which can be introduced into the system to control or

dissipate rotor energy. To be effective, damping must be placed at a location, where experiences

motion.

Other design factors such as the bearing span, shaft diameter, mass placement, and

overhung mass also influence the rotor natural frequencies and mode shapes. Once the system's

natural frequencies and mode shapes have been determined through analysis, one can make

design changes if necessary to adjust one or more of the key design factors addressed above.

3.6 Thrust Balance System

It is a major challenge for a turbopump designer to manage the axial thrust forces generated by

the pressure and fluid momentim changes in the pump and turbine elements. The axial bearing
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loads need be maintained within the bearings capability through all phases of operations,

including startup transient, main stage, and shutdown transient. Several design methods are

available to the designer to balance the axial thrust: 1) impeller balance ribs, 2) impeller seals, 3)

anti-vortex ribs, 4) self-compensating balance piston, and 5) thrust bearings. These methods can

used by themselves or in a combination as shown in Figure 11. Modeling of the thrust balance

system to determine the unbalanced force and its direction is difficult. Thus, model uncertainties

must be taken into account in predicting the operational clearances. In particular, startup and

shutdown transient predictions are the most difficult, and thus generally require test data for

model validation. The predicted amount of unbalanced force will help detennine the bearing

axial load capacity requirement. The critical flow path clearances must be held to tight tolerances

to meet the performance requirements while avoiding rubbing.

4. SUMMARY

The propellant feed system delivers the propellants from the tanks to the thrust chamber.

Depending on how the propellants are pressurized, they are classified as either pressure fed or

pump fed. The pressure-fed system is simple, relying on tank pressures to feed the propellants

into the thrust chamber. This system is limited to relatively low chamber pressures because

higher pressures make the propellant tanks too heavy. On the other hand, the pump-fed system

enables high chamber pressures independent of the tanks using a tirbopump. The turbopump is a

highly complex, integrated system requiring multidisciplinary engineering and coordination. The

selection of one propellant feed system over another must be made after design trades at the

integrated system level.
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